

IT 145 Final Project Guidelines and Rubric

Overview
A successful career in software development depends on a thorough understanding of the fundamentals of object-oriented programming and best practices for
software development. Your final project for this course will require you to apply the knowledge you have obtained prior to and during this course to the
development of a simple, working program and accompanying process documentation. Professionals in software development document their process including
requirements, design decisions, and defects for several different reasons as follows:

 To track what has been accomplished

 To track when items were completed in order to maintain a schedule

 To justify why a product works the way it does (verification and validation)

 To provide resources if a new team member is added so he or she can catch up

 To see where the most defects are being injected in order to prevent them

 To review what happened during the project in order to create new ways of improving the process

For your development project, you will imagine you are in charge of managing a zoo’s computer infrastructure. There are many aspects of a zoo that need to be
in place to keep it running. Two of those aspects are controlling data access and monitoring animal activities in exhibits. You will select which of these key
components you wish to develop. Both options require at least two classes and for the design to be broken into multiple methods. Select one of the options
provided in the prompt below and create your program and process documentation based on the specified requirements.

The final project for this course is the creation of an authentication or monitoring system. The final project represents an authentic demonstration of
competency because it involves application of real-world Java programming. The project is divided into one milestone and several final project journal
assignments, which will be submitted at various points throughout the course to scaffold learning and ensure quality final submissions. Milestone One will be
submitted in Module Five. The final project will be submitted in Module Seven.

In this assignment, you will demonstrate your mastery of the following course outcomes:

 Implement appropriate variables, operators, methods, and classes as they are used in object-oriented programming for developing successful programs

 Utilize appropriate syntax and conventions in terms of their best practice and use in programming

 Debug coding errors by testing existing code, identifying errors, and correcting errors for improved functionality

 Assemble basic, working programs that effectively integrate essential elements of object-oriented programming

Prompt
You have assumed the role of managing the technology infrastructure at a zoo. You will develop a working program (either an authentication system or a
monitoring system) for the zoo designed to follow the specifications outlined in the overview. You will also provide detailed documentation describing your
development process. Select from one of the following options as the basis of your program.

Option 1: Authentication System
For security-minded professionals, it is important that only the appropriate people gain access to data in a computer system. This is called authentication. Once
users gain entry, it is also important that they only see data related to their role in a computer system. This is called authorization. For the zoo, you will develop
an authentication system that manages both authentication and authorization. You have been given a credentials file that contains credential information for
authorized users. You have also been given three files, one for each role: zookeeper, veterinarian, and admin. Each role file describes the data the particular role
should be authorized to access. Create an authentication system that does all of the following:

 Asks the user for a username

 Asks the user for a password

 Converts the password using a message digest five (MD5) hash
o It is not required that you write the MD5 from scratch. Use the code located in this document and follow the comments in it to perform this

operation.

 Checks the credentials against the valid credentials provided in the credentials file
o Use the hashed passwords in the second column; the third column contains the actual passwords for testing and the fourth row contains the

role of each user.

 Limits failed attempts to three before notifying the user and exiting the program

 Gives authenticated users access to the correct role file after successful authentication
o The system information stored in the role file should be displayed. For example, if a zookeeper’s credentials is successfully authenticated, then

the contents from the zookeeper file will be displayed. If an admin’s credentials is successfully authenticated, then the contents from the admin
file will be displayed.

 Allows a user to log out

 Stays on the credential screen until either a successful attempt has been made, three unsuccessful attempts have been made, or a user chooses to exit

You are allowed to add extra roles if you would like to see another type of user added to the system, but you may not remove any of the existing roles.

Option 2: Monitoring System
As a zookeeper, it is important to know the activities of the animals in your care and to monitor their living habitats. Create a monitoring system that does all of
the following:

 Asks a user if they want to monitor an animal, monitor a habitat, or exit

 Displays a list of animal/habitat options (based on the previous selection) as read from either the animals or habitats file

http://snhu-media.snhu.edu/files/course_repository/undergraduate/it/it145/txt_files/credentials.txt
http://snhu-media.snhu.edu/files/course_repository/undergraduate/it/it145/txt_files/zookeeper.txt
http://snhu-media.snhu.edu/files/course_repository/undergraduate/it/it145/txt_files/veterinarian.txt
http://snhu-media.snhu.edu/files/course_repository/undergraduate/it/it145/txt_files/admin.txt
http://snhu-media.snhu.edu/files/course_repository/undergraduate/it/it145/md5digest.zip
http://snhu-media.snhu.edu/files/course_repository/undergraduate/it/it145/txt_files/animals.txt
http://snhu-media.snhu.edu/files/course_repository/undergraduate/it/it145/txt_files/habitats.txt

o Asks the user to enter one of the options

 Displays the monitoring information by finding the appropriate section in the file

 Separates sections by the category and selection (such as “Animal - Lion” or “Habitat - Penguin”)

 Uses a dialog box to alert the zookeeper if the monitor detects something out of the normal range (These will be denoted in the files by a new line
starting with *****. Do not display the asterisks in the dialog.)

 Allows a user to return to the original options

You are allowed to add extra animals, habitats, or alerts, but you may not remove the existing ones.

Specifically, the following critical elements must be addressed:

I. Process Documentation: Create process documentation to accompany your program that addresses all of the following elements:
A. Problem Statement/Scenario: Identify the program you plan to develop and analyze the scenario to determine necessary consideration for

building your program.
B. Overall Process: Provide a short narrative that shows your progression from problem statement to breakdown to implementation strategies. In

other words, describe the process you took to work from problem statement (your starting point) to the final product. Your process description
should align to your end resulting program and include sufficient detail to show the step-by-step progress from your problem statement
analysis.

C. Pseudocode: Break down the problem statement into programming terms through creation of pseudocode. The pseudocode should
demonstrate your breakdown of the program from the problem statement into programming terms. Explain whether the pseudocode differs
from the submitted program and document any differences and the reason for changes.

D. Methods and Classes: Your pseudocode reflects distinct methods and classes that will be called within the final program. If the pseudocode
differs from the submitted program, document the differences and reason for changes.

E. Error Documentation: Accurately document major errors that you encountered while developing your program.
F. Solution Documentation: Document how you solved the errors and what you learned from them.

II. Program: Your working program should include all of the specified requirements. The comments within your program will count toward the

assessment of the documentation aspects of your submission.
A. Functionality

1. Input/Output: Your program reads input from the user and uses system output.
2. Control Structures: Your program utilizes appropriate control structures for program logic.
3. Libraries: Your program utilizes standard libraries to pull in predefined functionality.
4. Classes Breakdown: Your program is broken down into at least two appropriate classes.
5. Methods: Your program utilizes all included methods correctly within the classes.
6. Error Free: Your program has been debugged to minimize errors in the final product. (Your program will be run to determine

functionality.)

B. Best Practices: These best practices should be evident within your working program and process documentation.
1. Formatting Best Practices: Provide program code that is easy to read and follows formatting best practices as defined by the industry,

such as with indentation.
2. Documentation Best Practices: Include comments where needed within the program in appropriate detail for communicating purpose,

function, and necessary information to other information technology (IT) professionals.
3. Coding Best Practices: Ensure your program supports clean code through descriptive variable names.

Milestones
Milestone One: Discussion Peer Review: Final Project Planning
In Module Five, you will create and submit the pseudocode for the final project problem statement. This milestone will be graded with the Milestone One
Rubric.

Final Submission: Authentication or Monitoring System
In Module Seven, you will submit your final project. It should be a complete, polished artifact containing all of the critical elements of the final project. It should
reflect the incorporation of feedback gained throughout the course. This submission will be graded with the Final Project Rubric.

Final Project Rubric
Guidelines for Submission: Your process documentation should be approximately 2 to 4 pages double-spaced and in 12-point Times New Roman font. Any
resource citations should adhere to the most current guidelines for APA formatting. You will submit the code for your working program in a separate file from
your process documentation, though the two will be graded together by your instructor. Submit all files as a ZIP file to Blackboard for grading.

Instructor Feedback: This activity uses an integrated rubric in Blackboard. Students can view instructor feedback in the Grade Center. For more information,
review these instructions.

Critical Elements Exemplary Proficient Needs Improvement Not Evident Value
Process

Documentation:
Problem

Statement/Scenario

Meets “Proficient” criteria and
determination demonstrates a
thorough understanding of
necessary consideration for
building the program (100%)

Identifies the program to be
developed and analyzes the
scenario to determine
necessary consideration for
building the program (85%)

Identifies the program to be
developed and analyzes the
scenario to determine
necessary consideration for
building the program, but
analysis is cursory or contains
inaccuracies (55%)

Does not identify the program to
be developed or analyze the
scenario to determine necessary
consideration for building the
program (0%)

4.75

https://snhu-media.snhu.edu/files/production_documentation/tutorials/zippingfiles.jpg
http://snhu-media.snhu.edu/files/production_documentation/formatting/rubric_feedback_instructions_student.pdf

Process
Documentation:
Overall Process

Meets “Proficient” criteria and
narrative is exceptionally clear
and well contextualized (100%)

Provides a short narrative that
shows progression from
problem statement to
breakdown to implementation
strategies that aligns to end
the resulting program and
includes sufficient detail to
show the step-by-step progress
from problem statement
analysis (85%)

Provides a short narrative that
shows progression from
problem statement to
breakdown to implementation
strategies, but narrative is
illogical or does not align to
end the resulting program or
does not include sufficient
detail to show the step-by-step
progress from problem
statement analysis (55%)

Does not provide a short
narrative that shows progression
from problem statement to
breakdown to implementation
strategies (0%)

4.75

Process
Documentation:

Pseudocode

Meets “Proficient” criteria and
demonstrates thorough
understanding of creation of
pseudocode (100%)

Breaks down the problem
statement into programming
terms through creation of
pseudocode and explains
whether the pseudocode
differs from the submitted
program and the reasons for
the changes (85%)

Breaks down the problem
statement into programming
terms through creation of
pseudocode and explains
whether the pseudocode
differs from the submitted
program and the reasons for
the changes, but pseudocode
contains inaccuracies or
explanation is illogical or
incomplete (55%)

Does not break down the
problem statement into
programming terms through
creation of pseudocode or
explain whether the pseudocode
differs from the submitted
program (0%)

4.75

Process
Documentation:

Methods and Classes

Reflects distinct methods and
classes in the pseudocode that
will be called within the final
program and explains whether
the pseudocode differs from
the submitted program and the
reasons for the changes (100%)

Reflects distinct methods and
classes in the pseudocode that
will be called within the final
program and explains whether
the pseudocode differs from
the submitted program and the
reasons for the changes, but
explanation contains errors
(55%)

Does not reflect distinct methods
and classes in the pseudocode
that will be called within the final
program or explain whether the
pseudocode differs from the
submitted program (0%)

5.94

Process
Documentation: Error

Documentation

 Accurately documents major
errors encountered while
developing the program
(100%)

Documents major errors
encountered while developing
the program, but
documentation lacks detail or
clarity or contains inaccuracies
(55%)

Does not document major errors
encountered while developing
the program (0%)

7.92

Process
Documentation:

Solution
Documentation

Meets “Proficient” criteria and
demonstrates an acute ability
to learn from resolved errors
(100%)

Accurately documents how the
errors were solved and what
was learned from them (85%)

Documents how the errors
were solved and what was
learned from them, but
documentation lacks detail or
clarity or contains inaccuracies
(55%)

Does not document how the
errors were solved and what was
learned from them (0%)

7.92

Program
Functionality:
Input/Output

 Program accurately reads input
from the user and uses system
output (100%)

Program reads input from the
user and uses system output,
but with errors (55%)

Program does not read input
from the user and use system
output (0%)

5.94

Program
Functionality: Control

Structures

Program accurately utilizes
appropriate control structures
for program logic (100%)

Program utilizes control
structures for program logic,
but with errors (55%)

Program does not utilize control
structures for program logic (0%)

5.94

Program
Functionality:

Libraries

 Program accurately utilizes
standard libraries to pull in
predefined functionality
(100%)

Program utilizes standard
libraries to pull in predefined
functionality, but with errors
(55%)

Program does not utilize
standard libraries to pull in
predefined functionality (0%)

7.92

Program
Functionality: Classes

Breakdown

 Program accurately breaks
down into at least two
appropriate classes (100%)

Program breaks down into at
least two classes, but with
errors (55%)

Program does not break down
into any classes (0%)

4.75

Program
Functionality:

Methods

 Program accurately utilizes all
included methods within the
classes (100%)

Program utilizes all included
methods within the classes,
but with errors (55%)

Program does not utilize all
included methods within the
classes (0%)

4.75

Program
Functionality: Error

Free

 Debugs program to minimize
errors (100%)

Debugs program to minimize
errors, but significant errors
remain that impact
functionality (55%)

Does not debug program to
minimize errors (0%)

7.92

Program Best
Practices: Formatting

Best Practices

Meets “Proficient” criteria and
demonstrates a sophisticated
awareness of industry best
practices in formatting (100%)

Provides program code that is
easy to read and follows
formatting best practices as
defined by the industry (85%)

Provides program code that is
easy to read but follows only
some formatting best practices
(55%)

Does not provide program code
that is easy to read or follows any
formatting best practices (0%)

7.92

Program Best
Practices:

Documentation Best
Practices

Meets “Proficient” criteria and
shows keen insight into
documentation best practices
in programming (100%)

Includes clear, detailed
comments where needed
within the program for
communicating purpose,
function, and necessary
information to other IT
professionals (85%)

Includes comments where
needed within the program for
communicating purpose,
function, and necessary
information to other IT
professionals, but comments
lack detail or clarity (55%)

Does not include comments
where needed within the
program for communicating
purpose, function, and necessary
information to other IT
professionals (0%)

7.92

Program Best
Practices: Coding Best

Practices

Meets “Proficient” criteria and
shows keen insight into coding
best practices in programming
(100%)

Program supports clean code
through descriptive variable
names (85%)

Program supports clean code
through descriptive variable
names, but with errors (55%)

Program does not support clean
code through descriptive variable
names (0%)

7.92

Articulation of
Response

Submission is free of errors
related to citations, grammar,
spelling, syntax, and
organization and is presented
in a professional and easy to
read format (100%)

Submission has no major errors
related to citations, grammar,
spelling, syntax, or
organization (85%)

Submission has major errors
related to citations, grammar,
spelling, syntax, or
organization that negatively
impact readability and
articulation of main ideas
(55%)

Submission has critical errors
related to citations, grammar,
spelling, syntax, or organization
that prevent understanding of
ideas (0%)

2.99

Total 100%

